Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis

Identifieur interne : 002D52 ( Main/Corpus ); précédent : 002D51; suivant : 002D53

Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis

Auteurs : Silke Schmidt ; Michael A. Schmidt ; Xuejun Qin ; Eden R. Martin ; Elizabeth R. Hauser

Source :

RBID : ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A

English descriptors

Abstract

The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/gepi.20152

Links to Exploration step

ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Michael A" sort="Schmidt, Michael A" uniqKey="Schmidt M" first="Michael A." last="Schmidt">Michael A. Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Xuejun" sort="Qin, Xuejun" uniqKey="Qin X" first="Xuejun" last="Qin">Xuejun Qin</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/gepi.20152</idno>
<idno type="url">https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002D52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<author>
<name sortKey="Schmidt, Silke" sort="Schmidt, Silke" uniqKey="Schmidt S" first="Silke" last="Schmidt">Silke Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Michael A" sort="Schmidt, Michael A" uniqKey="Schmidt M" first="Michael A." last="Schmidt">Michael A. Schmidt</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qin, Xuejun" sort="Qin, Xuejun" uniqKey="Qin X" first="Xuejun" last="Qin">Xuejun Qin</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Eden R" sort="Martin, Eden R" uniqKey="Martin E" first="Eden R." last="Martin">Eden R. Martin</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hauser, Elizabeth R" sort="Hauser, Elizabeth R" uniqKey="Hauser E" first="Elizabeth R." last="Hauser">Elizabeth R. Hauser</name>
<affiliation>
<mods:affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Genetic Epidemiology</title>
<title level="j" type="sub">The Official Publication of the International Genetic Epidemiology Society</title>
<title level="j" type="abbrev">Genet. Epidemiol.</title>
<idno type="ISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-07">2006-07</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="409">409</biblScope>
<biblScope unit="page" to="422">422</biblScope>
</imprint>
<idno type="ISSN">0741-0395</idno>
</series>
<idno type="istex">3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</idno>
<idno type="DOI">10.1002/gepi.20152</idno>
<idno type="ArticleID">GEPI20152</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0741-0395</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>complex human disease</term>
<term>genetic heterogeneity</term>
<term>simulation</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Silke Schmidt</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael A. Schmidt</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xuejun Qin</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eden R. Martin</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
<json:item>
<name>Elizabeth R. Hauser</name>
<affiliations>
<json:string>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>complex human disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>genetic heterogeneity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>simulation</value>
</json:item>
</subject>
<articleId>
<json:string>GEPI20152</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1738</abstractCharCount>
<pdfWordCount>6455</pdfWordCount>
<pdfCharCount>39673</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>263</abstractWordCount>
</qualityIndicators>
<title>Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<publisherId>
<json:string>GEPI</json:string>
</publisherId>
<pages>
<total>14</total>
<last>422</last>
<first>409</first>
</pages>
<issn>
<json:string>0741-0395</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1098-2272</json:string>
</eissn>
<title>Genetic Epidemiology</title>
<doi>
<json:string>10.1002/(ISSN)1098-2272</json:string>
</doi>
</host>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1002/gepi.20152</json:string>
</doi>
<id>3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2006</date>
</publicationStmt>
<notesStmt>
<note>National Institute of Health - No. NEI R03‐EY015216; No. NIMH R01‐MH595228; No. NIA R01‐AG20135;</note>
<note>Neurosciences Education and Research Foundation.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<author>
<persName>
<forename type="first">Silke</forename>
<surname>Schmidt</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</p>
</note>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Michael A.</forename>
<surname>Schmidt</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Xuejun</forename>
<surname>Qin</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Eden R.</forename>
<surname>Martin</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
<author>
<persName>
<forename type="first">Elizabeth R.</forename>
<surname>Hauser</surname>
</persName>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Genetic Epidemiology</title>
<title level="j" type="sub">The Official Publication of the International Genetic Epidemiology Society</title>
<title level="j" type="abbrev">Genet. Epidemiol.</title>
<idno type="pISSN">0741-0395</idno>
<idno type="eISSN">1098-2272</idno>
<idno type="DOI">10.1002/(ISSN)1098-2272</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-07"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="409">409</biblScope>
<biblScope unit="page" to="422">422</biblScope>
</imprint>
</monogr>
<idno type="istex">3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</idno>
<idno type="DOI">10.1002/gepi.20152</idno>
<idno type="ArticleID">GEPI20152</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>complex human disease</term>
</item>
<item>
<term>genetic heterogeneity</term>
</item>
<item>
<term>simulation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2005-11-07">Received</change>
<change when="2006-03-16">Registration</change>
<change when="2006-07">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1098-2272</doi>
<issn type="print">0741-0395</issn>
<issn type="electronic">1098-2272</issn>
<idGroup>
<id type="product" value="GEPI"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GENETIC EPIDEMIOLOGY">Genetic Epidemiology</title>
<title type="subtitle">The Official Publication of the International Genetic Epidemiology Society</title>
<title type="short">Genet. Epidemiol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/gepi.v30:5</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2006-07">July 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/gepi.20152</doi>
<idGroup>
<id type="unit" value="GEPI20152"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2006 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2005-11-07"></event>
<event type="manuscriptRevised" date="2006-02-17"></event>
<event type="manuscriptAccepted" date="2006-03-16"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2006-05-02"></event>
<event type="firstOnline" date="2006-05-02"></event>
<event type="publishedOnlineFinalForm" date="2006-06-08"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.9 mode:FullText source:HeaderRef result:HeaderRef" date="2010-06-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">409</numbering>
<numbering type="pageLast">422</numbering>
</numberingGroup>
<correspondenceTo>Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GEPI.GEPI20152.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="23"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
<title type="short" xml:lang="en">Linkage Analysis with Gene‐Environment Interaction</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Silke</givenNames>
<familyName>Schmidt</familyName>
</personName>
<contactDetails>
<email>silke.schmidt@duke.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Michael A.</givenNames>
<familyName>Schmidt</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Xuejun</givenNames>
<familyName>Qin</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Eden R.</givenNames>
<familyName>Martin</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Elizabeth R.</givenNames>
<familyName>Hauser</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">complex human disease</keyword>
<keyword xml:id="kwd2">genetic heterogeneity</keyword>
<keyword xml:id="kwd3">simulation</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Institute of Health</fundingAgency>
<fundingNumber>NEI R03‐EY015216</fundingNumber>
<fundingNumber>NIMH R01‐MH595228</fundingNumber>
<fundingNumber>NIA R01‐AG20135</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Neurosciences Education and Research Foundation.</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset.
<i>Genet. Epidemiol</i>
. 2006. © 2006 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Linkage Analysis with Gene‐Environment Interaction</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silke</namePart>
<namePart type="family">Schmidt</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<description>Correspondence: Center for Human Genetics, Duke University Medical Center, Box 3445, Durham, NC 27710===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael A.</namePart>
<namePart type="family">Schmidt</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejun</namePart>
<namePart type="family">Qin</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eden R.</namePart>
<namePart type="family">Martin</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth R.</namePart>
<namePart type="family">Hauser</namePart>
<affiliation>Center for Human Genetics, Duke University Medical Center, Durham, North Carolina</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-07</dateIssued>
<dateCaptured encoding="w3cdtf">2005-11-07</dateCaptured>
<dateValid encoding="w3cdtf">2006-03-16</dateValid>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="references">23</extent>
</physicalDescription>
<abstract lang="en">The ordered subset analysis (OSA) method allows for the incorporation of covariates into the linkage analysis of a dichotomous disease phenotype in order to reduce genetic heterogeneity. Complex human diseases may involve gene‐environment (G × E) interactions, which represent a special form of heterogeneity. Here, we present results of a simulation study to evaluate the performance of OSA when the disease‐generating mechanism includes G × E interaction, in the absence of main effects of gene and environment. First, the complex simulation models are illustrated graphically. Second, we show that OSA is underpowered to detect small to moderate interaction effects, consistent with previous evaluations of other linkage analysis methods. When interaction effects are large enough to produce substantial marginal effects, standard linkage methods have sufficient power to detect significant baseline linkage evidence in the entire dataset. The power of OSA to improve upon a high baseline lod score is then strongly dependent on the underlying genetic model, especially the susceptibility allele frequency. If significant, OSA identifies family subsets that are more efficient for follow‐up analysis than the entire dataset, in terms of the proportion of susceptible genotypes among generated marker genotypes. For example, when strong G × E interaction with RR(G × E)=10 is operating in at least 70% of families in the dataset, OSA has at least 70% power to detect a subset of families with significantly greater linkage evidence, the majority of linked families are captured in the OSA subset, and the per‐genotype efficiency in the subset is 20–30% greater than in the entire dataset. Genet. Epidemiol. 2006. © 2006 Wiley‐Liss, Inc.</abstract>
<note type="funding">National Institute of Health - No. NEI R03‐EY015216; No. NIMH R01‐MH595228; No. NIA R01‐AG20135; </note>
<note type="funding">Neurosciences Education and Research Foundation.</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>complex human disease</topic>
<topic>genetic heterogeneity</topic>
<topic>simulation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Genetic Epidemiology</title>
<subTitle>The Official Publication of the International Genetic Epidemiology Society</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Genet. Epidemiol.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">0741-0395</identifier>
<identifier type="eISSN">1098-2272</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-2272</identifier>
<identifier type="PublisherID">GEPI</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>409</start>
<end>422</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A</identifier>
<identifier type="DOI">10.1002/gepi.20152</identifier>
<identifier type="ArticleID">GEPI20152</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2006 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002D52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3E7B51924B9DF72FA7F4F54E0BA84E39ADCAE07A
   |texte=   Linkage analysis with gene‐environment interaction: model illustration and performance of ordered subset analysis
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024